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The motion of spherical bubbles in a box containing an incompressible and irrotational 
liquid with periodic boundary conditions is studied. Equations of motion are deduced 
using a variational principle. When the bubbles have approximately the same velocity 
their configuration is Lyapunov stable, provided they are arranged in such a way so as 
to minimize the effective conductivity of a composite material where the bubbles are 
treated as insulators. The minimizing configurations become asymptotically stable with 
the addition of gravity and liquid viscosity. This suggests that a randomly arranged 
configuration of bubbles, all with approximately the same velocity, cannot be stable. 
Explicit equations of motion for two bubbles are deduced using Rayleigh‘s method for 
solving Laplace’s equation in a periodic domain. The results are extended for more 
than two bubbles by considering pairwise interactions. Numerical simulations with 
gravity and liquid viscosity ignored show the bubbles form clusters if initially they are 
randomly arranged with identical velocities. The clustering is inhibited, however, if the 
initial velocities are sufficiently different. The variance of the bubbles’ velocities is 
observed to act like a temperature; a lesser amount of clustering occurs with increasing 
temperature. Finally, in considering the effects of gravity and liquid viscosity, the long 
time behaviour is found to result in the formation of bubble clusters aggregated in a 
plane perpendicular to the direction of gravity. 

1. Introduction 
In an effort to understand void wave propagation in bubbly flow, attention has been 

directed to the motion of rigid spherical gas bubbles in an incompressible and 
irrotational liquid. Many investigators have reported bubbly flows to have void waves 
travelling at a well-defined speed (see, for example, Pauchon & Banerjee (1986) and the 
references therein). The speed of these waves has been found to be almost independent 
of frequency, suggesting that the behaviour of void wave propagation in bubbly flow 
is governed by a hyperbolic system with little or no dispersion. For this reason, effective 
equations which describe the behaviour of averaged quantities such as void fraction or 
velocity are expected to be hyperbolic. 

Traditionally effective equations have been derived by volume averaging the 
conservation laws of each phase so as to produce conservation laws for the averaged 
quantities (e.g. Delhaye & Achard 1976; Banerjee & Chan 1980). This leads to closure 
problems, however, as information is lost in the averaging procedure and constitutive 
relationships must be found to close the system. Since the derivation of these 
constitutive relationships in bubbly flow has the added difficulty of an unknown 
configuration of bubbles, it is typically assumed that the bubbles are arranged in a 
random isotropic pattern. Biesheuvel & van Wijngaarden (1984), Drew & Wood (1985) 
and Pauchon & Banerjee (1986), amongst others, have derived effective equations in 
this manner for bubbly flow, although the models presented in these papers differ 
because of the investigators choice of constitutive relationships. 
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Geurst (1985, 1986) derived effective equations using a different approach. Rather 
than volume averaging the conservation laws he chose to volume average the energy. 
The effective equations then follow from a variational principle with the volume 
averaged energy as the Lagrangian. This approach only requires the introduction of 
one phenomenological function and this can be accurately calculated. Wallis (1989) 
examined Geurst’s model and compared it to the models of Drew & Wood (1985) and 
Pauchon & Banerjee (1986) and found only Geurst’s model to be consistent with the 
motion of a single bubble. Pauchon & Smereka (1992) also studied Geurst’s model and 
showed it to be, under suitable assumptions, equivalent to effective equations derived 
by volume averaging the conservation laws for each phase. 

Although Geurst’s model seems to have a sound theoretical basis, it turns out to be 
ill-posed in the dilute limit. This means the system is unstable and the effective 
equations are elliptic rather than hyperbolic, clearly in disagreement with experimental 
findings. Geurst (1985) was aware of this deficiency and showed that higher-order 
corrections to the phenomenological function could stabilize his model. He argued 
heuristically this would correspond to non-isotropic bubbly flows. It should be pointed 
out that both Lhuillier (1985) and van Beek (1982) obtained similar results using 
different approaches; van Beek associating the ill-posedness with the clustering of 
bubbles. 

Wallis (1989) showed the phenomenological function introduced by Geurst could be 
related to the effective conductivity of a composite material containing a uniform 
conductor with embedded insulating spheres. Smereka & Milton (1991) continued this 
line of reasoning and demonstrated that any homogeneous arrangement of bubbles 
would lead to ill-posed equations. They proved, however, that if the bubbles arrange 
themselves in ellipsoidal clusters, the effective equations become hyperbolic over a wide 
range of parameter values. They do not offer a mechanism to explain how the bubbles 
will move into clumps. 

Recently, Biesheuvel & Gorissen (1990) and van Wijngaarden & Kapteyn (1990) 
studied bubbly flow using ideas from the kinetic theory of gases. Biesheuvel & Gorissen 
derived effective equations using ensemble averages, although they too found it 
necessary to assume the form of several constitutive relations to close the system and 
obtained results similar to those found by Batchelor (1988). Van Wijngaarden & 
Kapteyn studied steady travelling waves in bubbly flow. They considered the dynamics 
of a pair of bubbles and extended their results to a suspension of bubbles considering 
only pairwise interactions. They also performed experiments which were found to be 
in reasonably close agreement with their theory. 

In this paper we consider bubbly mixtures of massless, rigid, identical spheres 
immersed in an invicid incompressible liquid. The situation of interest is a bubbly 
mixture of infinite extent with no boundaries at infinity. The liquid and bubbles are 
initially at rest, with the bubbles then set impulsively into motion. This means that the 
liquid velocity is irrotational and entirely determined by the bubble motion. This 
system is difficult to study because there is an infinite number of bubbles to track. 
Therefore we turn to a more modest problem and replace the infinite bubble field by 
a finite collection of bubbles in a box with periodic boundary conditions on the velocity 
potential. Our finite collection of bubbles will retain the essential features of the infinite 
field. Each bubble will feel the effects of an infinite number of bubbles through the 
periodic images, and the liquid velocity will be entirely determined by the bubble 
motion. It should be noted that the periodicity of the velocity potential does not 
preclude the possibility of a mean flow of liquid. In fact, if the bubbles are moving 
roughly in the same direction, we shall see that there is necessarily a mean flow. 
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The goal of this paper will be to find what configuration the bubbles will take after 
being started from a random initial arrangement. Once it is understood how the 
bubbles arrange themselves, it may be possible to deduce constitutive relationships 
which will lead to well-posed effective equations. In $2 the equations of motion for 
bubbles in a box with periodic boundary conditions are derived using a variational 
principle as outlined in Lamb (1932). This system is then shown to conserve the kinetic 
energy of the liquid and its momentum. These two conserved quantities are used to 
construct a Lyapunov function. We use this function to prove that if the initial 
velocities of the bubbles are nearly the same, and their initial configuration is 
sufficiently close to a minimizer of the effective conductivity, then the configuration is 
Lyapunov stable. In the conductivity problem considered here, the bubbles are treated 
as insulators and the liquid has unit conductivity. It is then demonstrated that if liquid 
viscosity and gravity are included, all initial conditions will result in the bubbles having 
identical velocities and arranged so as to minimize the effective conductivity as time 
tends to infinity. The effects of liquid viscosity are modelled using a single-bubble 
model. 

In $ 3  we compute the approximate equations of motion for two bubbles by solving 
Laplace’s equation in a periodic box. The conditionally convergent sums that result are 
evaluated using a method devised by Rayleigh (1892). The results are found to agree 
with those of van Wijngaarden (1976, 1982) in the appropriate limits. A two-bubble 
model accounting for liquid viscosity, similar to the model derived by Kok (1988), is 
included. In $4 the two-bubble model is extended to more bubbles by considering 
pairwise interactions. The approximations used in @3 and 4 are similar in many 
respects to those used by van Wijngaarden & Kapteyn (1990). 

The numerical results are presented in $ 5. In the conservative case, it is observed that 
the bubbles have a strong tendency to form clusters which are positioned broadside to 
the direction of flow. This clustering is inhibited, however, by the variance of the 
bubble’s velocities. If the variance is sufficiently large, clustering is prohibited and a 
random homogeneous configuration will persist. The effects of gravity and liquid 
viscosity cause the bubbles to arrange themselves ultimately into pancake-shaped 
clumps oriented broadside to the direction of flow. 

2. General theory 
The equations of motion are obtained using a variational principle as outlined in 

Lamb (1932, chapter 4). A set of ordinary differential equations is given describing the 
location of the centre of each bubble. 

2.1. Equations of motion 
We take the liquid velocity, vz,  to be irrotational; thus 

vz = v4, (2.1) 

(2 * 2) vzq5 = 0. 

where q5 is the velocity potential. Since the liquid is incompressible, q5 satisfies Laplace’s 
equation 

The normal component of the liquid velocity is equal to the normal component of the 
bubble’s velocity on its surface, thereby giving the boundary conditions: 

_ -  - uk - n, for k = 1 to N, an (2.3) 
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where uk is the velocity of the kth bubble and n is the outward drawn normal from the 
liquid surface into the bubble. We shall take q5 to be periodic on the box. The boundary 
conditions are imposed by first writing $I as 

where Yk is a vector-valued function associated with the kth bubble. Yk is determined 
entirely by the positions of the bubbles and its components must be harmonic. The 
boundary conditions are satisfied by taking 

nor on the kth sphere, 
0 on the other spheres, (2.5) 

for a = x, y and z. Here, subscript a denotes the components of the vectors, i.e. 

yk = @ k , ~ ~ , + @ k ~ , ~ , + @ k , , ~ , ,  (2 * 6)  
where ex, ey and e, are unit vectors along the x-, y-  and z-axes, respectively. Clearly 
(2.4) combined with (2.5) will satisfy (2.2) and (2.3). The periodicity condition is 
respected by taking $k,a to be periodic. The physical interpretation of (2.5) shows the 
kth bubble moving with unit velocity in the n, direction while the other bubbles remain 
stationary. 

The kinetic energy of the liquid is: 

where pz is the liquid density and 
Using Green's theorem, we have 

is the region of the cube occupied by the liquid. 

where S k  denotes the surface of the kth sphere and a V denotes the boundary of the box. 
The integration over aV is zero by periodicity. Substituting (2.4) into (2.8), we obtain 

The above equation simplifies, when we use (2.5), to 

T = &z u1 Is, YindSj - ui, 
$93 

(2.10) 

where the sum is understood to run from i = 1 to Nand j = 1 to N .  Now we define the 
matrix ,. 

(2.11) 

where the superscript T denotes the transpose and A, is a 3 x 3 matrix for each i and 
j .  The entries of A, depend only on the positions of the bubbles and not on their 
velocities. This follows from the boundary conditions on the Y,. The matrices Aij 
remain unchanged if the bubbles are rigidly translated together. Later we shall see that 
this invariance will give rise to conservation of momentum. 
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The matrices A,, have the following properties: 

A, = A,, (symmetric), 
A, = A: (self-adjoint). 

(2.12a) 
(2.12b) 

First we will establish (2.12~).  Using (2.5) and the periodicity condition, we can write 

A, = 1 Y i ( z ) T d S ,  
s+av 

where S+ a Vmeans the integration is taken over a1 liquid surfaces (the surfaces of the 
spheres and the sides of the box). It follows from Green's identity and (2.5) that 

Aij = J Y ("';)T - d S =  I,, !P,nTdSi =A,,. 
s+av an 

To prove (2.12b), we write A, in component form: 

Aij, ajj = 1 $ianjj ds j  (a, p = x, y and z>. 
s3 

We show, using similar arguments to the above, that 

= Aji,jja = &,/a. 
Thus we establish (2.12b). 

Combining (2.10) and (2.11) we find the total energy of the system is 

T = !jpl 2 U: A, ui, 
i., 

where A, = A&,, . . . , x N )  and 1, = ui, 

(2.13) 

(2.14) 

Therefore ui is a generalized velocity for the bubble's position, implying that T is the 
Lagrangian for the system and the equations of motion can be deduced from the 
Euler-Lagrange equation (see Lamb 1932, chapter 4). The Euler-Lagrange equation 
is 

- 0, fork = 1 to N .  d aT aT 
dtau, ax, 
_-_-_ (2.15) 

Substituting (2.13) into the above expression and using (2.12a, b), we obtain 

Since 

the previous equation becomes 

(2.16) 

(2.17) 
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which, when combined with 

gives us the equations of motion. 

i k  = uky (2.18) 

2.3. Conserved quantities. 
It is clear that T is a conserved quantity; multiplying (2.17) by u: and summing over 
k, we find 

1 3 4  
C U , T A k , U i  = x - i % , T A k i u { + -  x uruT-uj. 
k ,  i k ,  i i , i ,  k 

When the last term on the right-hand side is simplified using (2.16), the above equation 
becomes 1 

U ~ A k , U i + - ~ U ~ / i k , U i  = 0. 
k ,  i k , i  

Since A,, is symmetric and self-adjoint, we have 

- 0. d T  -- 
dt 

(2.19) 

Next we will establish conservation of momentum. In the situation we consider here, 
the kinetic energy of the liquid remains unchanged if the bubbles are rigidly translated. 
Therefore we have 

T(x,, xZ, . . . , x,) = T(x, + d, x2 + d, . . . , X, + d) ,  (2.20) 
where d is an arbitrary vector. Expanding the right-hand side of (2.20), we obtain 

The above expression must be true for all orders in d ;  thus, 

aT c- = 0. 
k 

If we sum (2.15) over k, we have 

(2.21) 

(2.22) 

which shows the following quantity to be conserved: 

pl 2 A,, ui = constant. (2.23) 

This conserved quantity is the momentum of the fluid. We can verify this by directly 
integrating the liquid velocity over K. The liquid momentum is 

k ,  , 

Using Gauss’s theorem, we find the components of the momentum to be 
,. 

Ma = /11j q5ea - ndS  (a = x,y and z), 
s 

(2.24) 
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where S indicates the integral is to be taken over all of the spheres. The contributions 
from the sides of the cube vanish from periodicity. Substituting (2.4) into (2.24), and 
splitting the integration up among the spheres, we find 

Since A,, is self-adjoint, we have 

(2.25) 

Thus the total liquid momentum is a conserved quantity, showing that, in general, the 
mean liquid velocity is not zero. It should be mentioned that Mis  also the total impulse 
or ‘virtual momentum’ of the system and is the same as the actual momentum because 
of the periodic boundary conditions. 

2.4. Stability of bubble configurations 
In this section, we consider the stability of certain arrangements of bubbles with 
approximately the same velocity. Here we shall see that if the bubbles are arranged in 
such a way so as to minimize, or closely minimize, the effective conductivity in the 
direction of the liquid momentum, the configuration will be Lyapunov stable. 

2.4.1. Construction of the Lyapunov function 
To begin we shall decompose the bubble’s velocity as follows: 

such that A,, W, = 0, 
,,f 

(2.27) 

(2.28) 
which implies that c satisfies 

p , d c  = M, 

where 

The above relationship shows that if all the bubbles have the same velocity, c the 
momentum of the liquid will be M. The relationship between M and c has been 
explored by Wallis (1989) and Smereka & Milton (1991). They show that for bubbles 
moving with identical velocities, and with periodic boundary conditions on the velocity 
potential, 

M = V X C ,  (2.29) 

where X is the energy coefficient matrix: 

3v = p,[(1 - -€) / -G] .  (2.30) 

Here / is the identity matrix, 6 is the void fraction and u is the effective conductivity 
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matrix of a material where the spheres are taken as insulators and the liquid has unit 
conductivity. From (2.28) and (2.29), we find that 

This must be true for any M since the liquid momentum can be in any direction ; thus, 

(2.31) d = - X .  
V 
PZ 

If we substitute (2.26) into (2.13), and use (2.27), (2.28) and (2.31), we find 

(2.32) T = --IMTL%-~M+~~ C WT A,, w,. 

This form of the kinetic energy is notable as the first term depends only on the position 
of the bubbles, consequently it is an effective potential energy. For convenience we 

(2.33) 
write 

Q = ---IMTX-'M 

and T ' = L  Z P ~  ZW TAijwj, (2.34) 

where +2 is the effective potential energy and T' is the effective kinetic energy. Let us 
now consider configuration of bubbles that satisfy the variational principle 

min' Q, (2.35) 
where min' indicates minimizing over xk with Jxi - xjl > 2a for all i =+ j .  This inequality 
ensures that the bubbles will not overlap. We expect these configurations to be stable 
since they are minima (either local or global) of the effective potential energy. 

+2 is minimized when the bubbles are arranged so as to minimize the effective 
conductivity in the direction of M. To prove this we take M = Me,, without loss of 

(2.36) 
generality, and obtain 

% = - e: X - l e Z .  

1 
2 v  , ,j  

1 
2v 

,,i 

M2 
2v 

Computing the inverse of .X, we find that 

where 

(2.37) 

and the subscripted X terms are the components of X .  The denominator of Q is a 
minor of X and since A? is positive definite then Xxx Xyy - > 0. From this it is 
possible to show that 

and Q = 0, if and only if .X, = Xu, = 0. 

It is clear from (2.37) that $2 is minimized by maximizing Xz, and minimizing Q. For 
any configuration of bubbles, Xz, and Xuz can always be made zero by an appropriate 
rigid rotation of the configuration. The minimum value of Q will consequently be zero 
and such a rotation will necessarily extremize &. It therefore follows from (2.30) that 

Q Z 0, 
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the configurations which minimize @ can be found with the following variational 
principle : 

- 
min' uzz. (2.38) 

The configurations which satisfy this variational principle are not unique for two 
reasons : first, any rigid translate of a minimizer is also a minimizer and, secondly, the 
effective potential energy may have several local minima. 

It is interesting to compare (2.38) with a result in Lamb (1932, Art. 128) concerning 
the stability of a translating ellipsoid. It is shown that the ellipsoid is stable only if it 
is travelling in such an orientation so as to maximize its virtual mass. This means it will 
be stable if it is broadside to its direction of travel. Evidently, from (2.29), the analogy 
of the virtual mass tensor for periodic structures is V X  = Vpt[/(l -4-4 and the 
direction of travel is M. The virtual mass in the direction of M is 

&kIwM. V 
(2.39) 

Hence the variational principle given by (2.38) can be equivalently expressed as 

max' (virtual mass}. (2.40) 
Finally, it should be mentioned that (2.40) is similar to the variational principle 
deduced by Benjamin (1987) for a single bubble with surface tension. Benjamin, 
however, considers variations of the bubble's shape, and here we consider variations 
of the bubbles' configuration. 

2.4.2. Stability result 
If the bubbles are placed in a configuration that is sufficiently close to a minimizer 

of rZz, if their initial velocities are all sufficiently similar, and the liquid momentum is 
in the z-direction then the configuration will stay close, modulo a rigid translate, to its 
initial arrangement for all time. 

To prove this we need to introduce some notation. We will denote the spatial 
configuration of the bubbles at a time t as %(t) = (xl, x,, . . . , x N }  and a configuration 
that satisfies (2.38) as 'ikm. Next we consider 

(2.41) 
and minimize it over all configurations that satisfy (2.38). A configuration that 
minimizes (2.41) is denoted %'g(t). Certainly this is not unique since @ will not change 
if the bubbles are rigidly translated together. Therefore S[%:(t)] will also minimize 
(2.41) where F[ -1 denotes any rigid translate of the bubbles. S[W:( t ) ]  is the solution 
of (2.38) that is closest to %(t), where (2.41) is used as the measure of closeness. 
Now consider a collection of bubbles that at time zero is arranged in a configuration 

V(0) and given velocities uk for k = 1 to N, which are decomposed as given by (2.26). 
Since T is a constant of the motion, we have 

W )  + ww)) - @v-['ik;(O)l) = 6, + 4, (2.42) 

where 6, = T(0) and 8, = @(%'(O))-%(F[%'g(O)]) .  The constants S, and 6, can be 
made as small as we like by choice of initial conditions. If the bubbles have nearly the 
same velocity 6, is small. Since F[%:(O)] is a minimizer of 42 then 
%(%(t))-%(S[W:(O)]) > 0 for %(t) in a neighbourhood of F[%';(O)]. This implies that 
T ( t )  + @(%'(t)) - %(F[%30)] )  can be used as a Lyapunov function. The initial 
configuration will stay close to S[%30)] for all time if 8, and 6, are sufficiently small. 
S [ % ~ ( O ) ]  is close to S[%(O)] since 6, is small. 
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FIGURE 1. An example of an idealized non-homogeneous bubbly flow is pictured here. The bubbles 
are randomly arranged inside the two dotted lines. The conductivity will be lowered as the distance 
between the two lines is reduced. 

2.4.3. Descrigtion of stable configurations 
Consider a box containing only two bubbles. From Jeffrey (1973), we know that crzz 

will be a minimum if the two bubbles are touching with their line of centre 
perpendicular to the z-axis. If more bubbles are added then we expect crzz to be lowest 
when all the bubbles are tightly packed in a single plane perpendicular to the z-axis (see 
figure 3). 

Now suppose there is a very large number of bubbles arranged as shown in figure 
1. If we further suppose that the bubbles are arranged inside the slab in a random 
fashion. we obtain 

n--E r -  

p+€($- 1)’ v z z  = (2.43) 

wherep is the fraction of the mixture that contains bubbles. Equation (2.43) is obtained 
by considering the media to be three regions placed ‘in series’. The regions containing 
no bubbles have unit conductivity and the region containing bubbles assumes the 
conductivity of a composite material composed of a random suspension of insulating 
spheres in a media of unit conductivity. Differentiating (2.43) shows 

% > 0’ 
aP 

(2.44) 

which means the conductivity must decrease as p decreases, thereby indicating the 
minimum will occur when p is as small as possible. The fact that the spheres are not 
allowed to overlap ensures p > E .  This shows that a stable configuration for a large 
number of bubbles is a tightly packed slab perpendicular to the z-axis. 
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2.4.4. Discussion 
The results of this section can be interpreted using basic ideas from the mechanics 

of conservative systems. If such a system is started close to a minimum of its potential 
energy, with small kinetic energy, it will stay close to its original position. In our case, 
this corresponds to the bubbles being given approximately the same velocity (small 
effective kinetic energy) and arranged in a tightly packed horizontal slab (close to a 
minimum of the effective potential energy). 

The situation is more complicated if one starts a conservative system far from a 
minimum of the potential energy and with no kinetic energy. Typically, one would 
expect the system to move initially toward a potential energy minimum and thereby 
gain kinetic energy. For later times it is difficult to determine what would happen, 
especially for a system with a large number of degrees of freedom. It is likely that the 
system would wander around a minimum of the potential energy. For interacting 
particle systems, one can expect a partitioning between the kinetic and potential energy 
when the system is in statistical equilibrium. This means the time average of the 
potential energy would be less than its initial value and the kinetic energy would be 
correspondingly higher. 

In considering the bubbles, we can start far from a minimum of the effective 
potential energy by taking a random homogeneous arrangement of bubbles. The 
effective kinetic energy will be small when the bubbles are given approximately the 
same velocity. In view of the paragraph above, we would expect that when the bubbles 
are in statistical equilibrium the time average of the potential energy will be lower than 
its initial value. The only way that this can occur is if the bubbles cluster to some 
degree. This suggests that if given similar velocities the bubbles have a propensity to 
cluster. 

2.5. Efects of gravity and liquid viscosity 
We shall take gravity to be the z-direction pointing downwards so that g = -ge,. The 
force on a single bubble due to gravity is 

PI w,* (2.45) 

We shall use a simplified model to include the effects of viscosity. Rather than 
accurately model the viscous effects, our goal here is to include a mechanism for the 
dissipation of energy. We shall assume the viscous effects occur in a thin boundary 
layer around the bubble and model the viscous force as 

12nka[uk- ul(xk)l, (2.46) 
where ,u is the viscosity of the liquid and q ( X k )  is the ambient liquid velocity at the centre 
of kth bubble. The first term in (2.46) can be found in Batchelor (1967), amongst 
others, and the correction for the mean flow is due to Levich (1962). Later we shall see 
that because of the boundary conditions on 4, t r l (xk )  falls off as R-*, where R is the 
distance between bubbles. The leading-order term in (2.46), then, is 

12Icpau,. (2.47) 

For the present discussion, the viscous force will be modelled with (2.47) and we will 
return to (2.46) later. The body force on kth bubble is found by adding (2.45) to (2.47). 
The equations of motion accounting for gravity and liquid viscosity are 

(2.48) 

4 FLM 254 
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where T is given by (2.13). From computations similar to those in $2, it follows that 

and 

where 

dT - = p1gre,TCuk-12npaCluk12, 
dt k k 

d M  - = - 12npuC(u,-u,), 
dt k 

- Pz a2g 
9P 

u, = u,e,, u, - -. 

(2.49) 

(2.50) 

(2.51) 

u, is the rise speed of a single bubble (see Batchelor 1967, $5.14). If we multiply (2.50) 
by uz and subtract it from (2.49), we obtain 

We let uk = uk - u, and find 
-- - - 12npax lvkI2, d 9  
dt k 

(2.52) 

(2.53) 

where 

Clearly 9- will decrease on all trajectories for which lukl =k 0. Therefore, as t + 00, all 
trajectories must tend to minimizers of 9. Since the second term of 9 is positive 
definite, the minimizers have uk = 0 for all k. The final configuration of the bubbles 
must satisfy the variational principle 

max’ e,‘ X e , ,  (2.54) 

which is equivalent to (2.38). This implies that the configurations which satisfy (2.38) 
are asymptotically stable. It also demonstrates, within the context of this simple model, 
that the combined effect of gravity and viscosity causes all initial conditions to tend to 
clustered slabs where all the bubbles are moving with the same velocity. Later we shall 
see that a similar behaviour occurs when the effects of liquid viscosity are modelled 
with (2.46). 

3. The two-bubble problem 
In this section, the equations of motion will be computed using the point-bubble 

approximation for two bubbles. This approximation considers only the dipole fields 
and consequently is only quantitatively valid when the bubbles are far apart. 
Nevertheless, some results based on work of Basset (1887) will be presented, which 
indicate that this approximation is appropriate even when the bubbles collide. 

3.1. Computation of A, 
The goal of this section is to compute an expression for the Al l ,  A12, and A,, using the 
point-bubble approximation. Determination of these quantities will allow explicit 
equations of motion to be determined using (2.17). We consider two bubbles inside a 
cube of length L. We use a rectangular coordinate system (x’,y’,z’) and place the 
two spheres with their centres on the z’-axis, and use a pair of spherical coordinates 
(rl,Ol,$) and (rg,02,q5) with the origins being at spheres 1 and 2 respectively. The $ 
coordinate is common to both systems. To locate the spheres to an arbitrary position 
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within the cube, the coordinate system is first rotated by an angle a in the (y', 2')-plane, 
followed by a rotation of /3 in the transformed (x',y')-plane. This generates a new 
coordinate system denoted by (x ,  y ,  z). The sides of the cube are parallel to the x- ,  y- 
and z-axes. The transformation matrix between (x, y ,  z )  and (x', y', z') is 

(3.1) 

(c;p -cosasinp sinasinp 
P =  sinp C O S ~ C O S , ~  

sin 01 cos a 

The derivation of A,, e, and A,, e, is presented below. The other columns of these 
matrices are computed in a similar fashion. From (2.1 1), we have 

A,,=, = lS,y9,,ndS, f o r j =  1,2, 

where $lr is the harmonic function that is periodic on the cube and satisfies the 
boundary conditions given by (2.5) : 

n, on sphere 1 ,  
0 onsphere2. (3.3) 

We look for a solution of the form 

A, a3 B, a' C, a3 
$,z = G(r) +-cos 8, +-sin 8, sin 4 +-sin 8, cos 4 , . . , 

2r,2 2r; 2r: 

A ,  a3 B a3 c u3 +T cos 8, + + sin 8, sin 4 +2 sin 8, cos 4 . . . , (3.4) 2r2 2r2 2 4  

where A,,  A,, B,, B,, C, and C, are constants to be determined and a is the radius of 
the sphere. G(R) is the harmonic function containing the growing spherical harmonics, 
and therefore arises from sources outside the cell. These are the fields created by the 
periodic images of the two bubbles and later we shall see that G(R) is O(R-3). To apply 
the boundary conditions we must expand $lz near the two spheres. This is done with 
the following expansions 

C O S L ~ ,  1 2r1cos8, =-+ (3.5a) ri R2 R3 ' 

sin 8, r,  sin 0, 
4 R3 * 

-=- (3.5b) 

Similar relations are found by interchanging 1 and 2 in (3.54 and (3.5b). The 
behaviour of y9,z near S, is 

+ (2", ++- 'li:) a3 sin 8, sin 4 + (ii -+ + 3 C2R~)u3s inOicos~+ ..., (3.6) 

4-2 
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where G(SJ and VG(S,) are G and its gradient, evaluated at the centre of Si, i = 1 and 
2. Applying the boundary conditions at sphere 1 shows 

and at sphere 2, 

Solving for the unknowns, we find 

(C,, B,, A,)  M (0, -sin a, -cos a) + VG(SJTP,  

(c,,B,, - A J  M (o, -2R3sina,,cosa +VG(S,)TP. 1 a3 a3 
R 

Substituting the expressions for A,, Bi and Ci into (3.6),  we obtain 

A,, e, = s $lz n dS M -:T VG(S,) + (0, 0, :T)’, 
Sl 

(3.7) 

The value of VG, evaluated at the centres of S, and S,, is deduced using crucial 
observation made by Rayleigh (1892): that the growing parts of the velocity potential 
must arise from exterior effects, namely the field produced by the spheres outside the 
reference cell. This field is also approximated by the point-bubble model. The 
contribution made by sphere 1 in the qth cell is 

’ 4  

where ri = (x - xq)p + (y - Y , ) ~  + ( z  - z ~ ) ~  and (xq, y,, z,) is the coordinate of the centre 
of sphere 1 in the qth cell. The contribution made by sphere 2 is zero to the accuracy 
of this approximation. Using Rayleigh’s observation, we have 

G(r) M % $47 (3.9) 
M=1 

where indicates the sum is to be taken over all periodic images of the reference 
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cell. Taking the gradient of both sides of (3.9), and evaluating it at the centre of Si, we 
obtain 

Here p, is the vector joining sphere 1 in the reference cell and its image in the qth cell, 
and R,  is the vector joining sphere 1 in the reference cell and sphere 2 in the qth cell. 

Since these lattice sums do not converge absolutely, their sum depends on how the 
terms are added. Rayleigh (1892) discusses this problem and offers a solution. His 
result was generalized by McPhedran & McKenzie (1978). Zl, is P S , ,  where S,  is the 
sum in Rayleigh's paper and is equal to gn. The other sums can also be evaluated using 
this method. Zlx and Zly are found to be zero and 

(3.11) 

where the * indicates the sum is to be added up with cubic symmetry about the 
reference cell. Combining the above expressions for VG(S,), and applying the above 
method to find the other columns of A,, we find 

A,, = A,, = +( 1 -;$)I, 

4L3 /++c*- q-0 R3, a3 ( -  I 3-, "2) 3 T2 A,, =A,, = --- 

(3.12 a) 

(3.12 b) 

where I is the identity matrix and R, = R.  

3.2. Motion of two bubbles in an unbounded liquid 
To compare (3.12) with previous results, we must consider the case of an unbounded 
liquid. Taking L+ co, we have 

A,, =A,, = gl (3.13 a) 

and 

The total energy is 

(3.13b) 

(3.14) 
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Let us now consider two special cases of (3.14) in which the bubbles have velocities 
u1 = u, = Ue,. In the first case, they are moving perpendicular to their line of centres 
so that R - e, = 0, therefore 

T=&+ 1 + - 7  U2. (3.15) 

In the second case, the bubbles are moving parallel to their line of centres. Thus 
R . e, = R and (3.14) becomes 

T = kSl (1 - 3 $) v2. (3.16) 

Equations (3.15) and (3.16) are in agreement with the results of van Wijngaarden 
(1976, equations (3.18) and (3.27)). 

A more generalized study of the motion of two bubbles is facilitated with the new 
variables s = x, + x2 and R = x1 - x,. Their substitution into (3.14) gives 

(3.17) 

( if)  

T = L  4pI( S TH+ B + k T H -  k), 

where 

The equations of motion are given by the Euler-Lagrange equation: 

(3.18) 

(3.19) 

Since s does not appear explicitly in T, (3.18) becomes 

d a T  d 
dtas  dt 
-- - - -H+S = 0, 

which means H+S = J, (3.20) 

where J i s  a constant of the motion. We solve for S and substitute it into (3.19) and find 

(3.21) 

The foregoing equation has the Lagrangian 

2 = R T ~ - R - . P ~ ; l  J. (3.22) 

This form of the Lagrangian has the S dependence removed. Notice that the first term 
is similar to a kinetic energy, while the second depends only on R and is therefore an 
effective potential energy. Computing the inverse of H+ and taking J = Je,, we obtain 

, (3.23) 
a3 9a;;;'O) 1-3--j+ 2p  ( R P H i 1  J = 

(1 + g) (1  - 3 $) 
where 8 is the angle between R and the z-axis. Since this expression is only accurate to 
R-3, then to the same accuracy we have 

(3.24) 3a3P 
R P H ; ~  J = 2 s ~  +T(3 COS, e- 1). 
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Writing RTH- R in spherical coordinates, and leaving out the constant term in (3.24) 
as it makes no contribution to the equations of motion, we have the following 
expression for the Lagrangian 

9a3 3a3P 
4R3 R3 

( l ? 2 + R 2 ~ 2 + R 2 s i n 2 8 ~ 2 ) + - ~ 2 + - ( 3 ~ ~ ~ 2 0 - 1 ) .  (3.25) 

If we ignore azimuthal dependence and terms of the order l&i(2R-3, we recover the 
Lagrangian except for an unimportant constant derived by van Wijngaarden (1 982). 
His work shows the bubbles can be either attracted to each other or repelled, depending 
on initial conditions. For example, if the bubbles are given the same velocity and are 
moving perpendicular to their line of centres, they move towards each other and 
collide. If, on the other hand, they are moving parallel to their line of centres, they will 
be repelled from each other. We find this behaviour for trajectories determined by 
using (3.25) in the Euler-Lagrange equation. The equations of motion for L + 00 were 
computed using (3.12) substituted into (2.17), and the computed trajectories were 
qualitatively the same as those for L = 00. 

Clearly when the bubbles become too close, the approximations under which (3.14) 
was derived are violated although the behaviour is qualitatively correct. The bubbles 
are attracted as a result of the lower pressure that is between them as compared to the 
pressure in the surrounding fluid. This is true for any bubble separation distance, 
therefore one expects this behaviour will occur even if the higher order terms are 
included. 

The accuracy of the point-bubble approximation as the bubbles move closer together 
is assessed using a result of Basset (1887). Consider two bubbles initially located at 
rl = ( -x ,O,O)~ and r2 = (x,O,O)~, each given unit velocity in the direction of the 
z-axis. By symmetry, the line joining the centres of the bubbles will stay perpendicular 
to the z-axis and the bubbles will have velocities u, = (--1, 0,i') and u, = (x, 0, i)*. 
Basset shows that the kinetic energy accurate to 0(x-l2) is 

T = pl[a(x) R2 + b(x) i'], (3.26) 
a@) = $[1+35j+~(3lj~+9$+3['+ 181j10+ 181j11+33512)], where 

b ( X )  = iT [ 1 + t g 3  + X(ip + 35' + 5glo + 35'' -k gc")], 
E=a/2x, x =  1. 

If we set x = 0, the point-bubble approximation is recovered. The equations of motion 
are deduced using (3.26) in the Euler-Lagrange equation. These are solved numerically 
for x = 1 and x = 0, with a = 1 until they touch. An example of this type of 
computation is shown in figure 2. The difference between the two trajectories is so small 
they cannot be distinguished on the graph. The maximum discrepancy is found to 
occur at x = 1, the bubbles' radii, and has a relative magnitude of 0.2 %. These results 
suggest that the point-bubble approximation is appropriate even when the bubbles 
touch. 

3.3. Collision model 
In view of the prior discussion, it is clear that one must model collisions. Here a simple 
model will be used. It will be assumed that the bubbles bounce off each other like elastic 
spheres and that no coalescence occurs. First, we consider two bubbles in an 
unbounded liquid. The potential energy resulting from their collision is taken as 

q5c = s ( ]R-2a1+2a-R)3 .  (3.27) 
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FIGURE 2. The trajectories of two bubbles using the dipole approximation and Basset's approximation 
are shown. The difference between the two trajectories is smaller than the line width and consequently 
cannot be seen. 

This potential energy is zero for R > 2. The cubic power was chosen so as when -$c 

is added to the Lagrangian, it gives rise to a force which is differentiable in R (this will 
help in the numerics). To extend (3.27) to the periodic box, we have the following 
collision potential energy : 

(3.28) 

The upper limit in the sum means it is carried out over the cells adjacent to the reference 
cell. This ensures the bubbles properly collide with the image bubbles. 

3.4. Viscous eflects 
A liquid velocity, denoted u&), is induced at the centre of sphere 1 by sphere 2 and 
by the images of both spheres. Using the dipole approximation, we find 

2 
37 

u,(x,) = -- [A,, u2 + (A,, -;TI) u,] . (3.29) 

A similar relation can be found by interchanging 1 and 2. This result combined with 
(2.46) shows the total viscous force on the ith bubble is 

where 

and 

D,, = D,, = (1 -&)t 

3 
27 D,, = 02, = -Alz. 

(3.30) 

If we take L+ co, these relations can be inferred from those reported by Kok (1988). 
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Van Wijngaarden & Kapteyn (1990) summarized Kok's results and discussed in some 
depth the reason D,, is proportional to Al,. 

4. Extension to N bubbles 
The two-bubble problem will be extended to N bubbles by considering only pairwise 

interactions. This would be a good approximation for dilute well-mixed bubbly flows 
if the two-bubble problem had been solved exactly. Since the two-bubble problem was 
solved using the point-bubble approximation, we are formally restricted to dilute well- 
separated mixtures. Nevertheless, in view of the dynamics deduced from (3.26), we can 
also expect good accuracy for well-mixed suspensions. If any clustering occurs, the 
accuracy of this approach will not be clear. There is, however, no reason why we should 
not expect qualitative agreement, especially in view of the results contained in $4.2 
below. Van Wijngaarden & Kapteyn (1990) also used the point-bubble approximation 
to study the dynamics of bubble pairs which were extended to bubbly flows considering 
pairwise interactions. They studied steady void wave propagation in bubbly flows and 
found reasonably good agreement with their experiments. This lends more evidence to 
the validity of the point-bubble approximation. 

We shall denote the vector joining the centres of the ith andjth bubbles in the 
reference cell as R,. The vector that joins the ith sphere in the reference cell to thejth 
sphere in the qth cell is denoted Ri5,q. Therefore we have 

A, =+7(l-;$)l, 

and for i + j 
(4.1 a) 

(4.1 b) 

Similar relations are also found for D,. The potential energy for the collisions is 

4.1. Equations of motion 
The Lagrangian for the bubbles, including the collision model, is 9 = T-$c. The 
Euler-Lagrange equation is 

where fk are the forces on the bubble due to gravity and liquid viscosity: 

f k  =-12.n~~DD,kut+PZ7gez* 
i 

(4.4) 

The equations of motion are found by substituting the expressions for A, and D,, into 
(4.3). Before explicit equations of motion are computed, let us write the equations in 
dimensionless form. The following variables will be used : 



98 P .  Smereka 

where the ., denotes dimensionless variables. We substitute (4.5) into (4.3) and (4.4), 
and then drop the tildes to obtain 

where 

adj 

f c k  = 7 ( l R , , , Q - 2 1 + 2 - R , i , Q ) 2 R k ~ , q / R k i , q ?  
i + k  

and Re = 2aumpl/p is the Reynolds number of a single bubble. If we let Re -+ co, we 
recover the case with no gravity and no liquid viscosity. 

4.2. Stable configurations 
In the previous section we established that if Re = co, then a configuration was stable 
if sufficiently close to a minimizer of effective conductivity. In this section, we shall find 
an approximate expression for 5zz and then numerically compute minimizing 
configurations. From (2.31) we known that 

1 
gZz= l+s---CeTAilez ,  (4.7) v w  

and using the expression for Aij in dimensionless form, we obtain 

where Pz is the second Legendre polynomial and Bii, is the angle between Rij, and e,. 
Arguments similar to those in $2.4 show that stable solutions of (4.6) with Re = co 
satisfy 

min' ug). 
Bubble configurations that minimize C T ~ ) ,  with the constraint that the bubbles cannot 
overlap, were computed using an IMSL optimization routine called bcong. Figure 3 
shows an example of such a calculation for 27 bubbles with L = 15. The left-hand side 
of the figure shows the 'guess' or starting point, while the right-hand side shows a 
minimizing configuration. Figure 3 clearly shows the bubbles clustering in a plane 
perpendicular to the z-axis to lower the effective conductivity. It should be noted that 
the location of the bubble cluster is completely arbitrary and any translate is also a 
minimizer. It is natural to speculate on what would happen if we use more bubbles than 
the number that fills a horizontal plane. The results of such a situation are presented 
in figure 4, where we started with 125 bubbles and L = 15. The 'guess' configuration 
was a randomly perturbed simple cubic lattice and the minimizing arrangement clearly 
shows the bubbles clustering into single tightly packed slab. 
a$) may have several local minima in addition to its global minimum; therefore 
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FIGURE 3. An arrangement of 27 bubbles that minimize cZz. (a) and (b) show the initial guess, in the 
(x, y)- and (x, z)-planes, respectively; (c) and (d) show the corresponding minimizer. 
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FIGURE 4. This figure is the same as figure 3 except it has 125 bubbles. The initial guess was a 
small random perturbation of a simple cubic lattice. 
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FIGURE 5. Various snapshots are shown of the evolution of 50 bubbles, with L = 25. The bubbles 
started from a random configuration with unit velocity in the z-direction are shown. This figure 
presents the projection onto the (x,z)-plane. The snapshot times are: (a) = 0, (b) = 36, (c) = 72, 
(6) = 108, (e) = 144, v) = 180. 

these stable solutions may not be unique. When Re =+ co we expect the bubbles to 
asymptotically tend to a minimizer of C T ~ ) .  Since the minimizers may not be unique, 
dynamic simulations must be performed to determine the final configuration. 

The configurations found to minimize the approximate effective conductivity are 
similar to arrangements we would expect if the effective conductivity problem had been 
solved exactly (see 42.4.3). This shows that the effective potential energy, computed 
with the point-bubble approximation, is qualitatively correct even when the bubbles 
become clustered. 
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FIGURE 6.  Identical to figure 4 except the snapshots are now projections in the (x,y)-plane. 

5. Dynamic simulations 
5.1. Outline of the numerical method 

In this section, numerical solutions of bubble trajectories are computed. In order to 
achieve this it is useful to write (4.6) in the following form: 

This is done by solving the 3N x 3N system for u,. In order to evaluate F,, we must 
compute sums of the form m 

s = C*'g(Rq), (5.2) 
q=o 

where R, = R +qL, q = (n, m, I) and R is the vector joining two bubbles. The exact 
form of g is determined by (4.6). The lattice sums cannot be evaluated analytically and 



102 P. Smereka 

X 

X 

X 

X 

v) 

Z Z 

X X 
FIGURE 7. Various snapshots are shown of the evolution of 200 bubbles, with L = 40. The bubbles 
are started from a random configuration with unit velocity in the z-direction are shown. This figure 
presents the projection onto the (x,z)-plane. The snapshot times are: (a) = 0, (b) = 36, (c) = 72, 
(a) = 108, (e) = 144, v> = 180. 

therefore must be computed numerically. In order to improve the numerical evaluation 
of (5 .2) ,  it is useful to write it as co 

s = X*k(R,*), (5.3) 
q=o 

where R* = R, and p is chosen so that R, is as small as possible. This makes the 
q = 0 term of (5.3) the largest. Numerical evaluation of (5.3) requires a truncation, 
and we make the following approximation : 

00 

E*% 5 5 5 .  (5.4) 
q-0 m=-Q n--& I = - &  

We denote the vector field that has been evaluated using the truncated lattice sum by 
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FIGURE 8. Identical to figure 7 except the snapshots are now projections in the (x,y)-plane. 

I$?). Since it is very expensive to compute the lattice sums for large values of Q, we will 
want to keep Q as small as possible without compromising the accuracy too much. To 
estimate this error we must first have a way of accurately determining Fk. We shall 
accomplish this using Richardson extrapolation (see, for example, Bender & Orszag 
1978, p. 375). We begin by writing (5.4) as 

where the terms in the series are found to behave like Q-3 for large Q. This suggests that 
Richardson extrapolation would provide an efficient way of improving the convergence 
of the sum. Since fl2) are the partial sums of ( 5 . 9 ,  Richardson extrapolation gives the 
following approximation to Fk 
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FIGURE 9. A plot of the normalized effective potential energy, Y ,  as a function of time for the 
numerical results shown in figures 5-8. -, 50 bubbles; 0-0, 200 bubbles. The decrease in Y 
indicates clustering of the bubbles. 
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The above expression was examined for a large number of different configurations, 
having between 20 and 60 bubbles, and was found to converge very quickly. The 
slowest rate of convergence was observed for random configurations. It was found that e had converged to at least 8 significant figures for M = 4 and m = 8 in all of the cases 
studied. Therefore it was concluded that represented a very good approximation to 
Fk. Unfortunately, using this approximation with M = 4 and m = 8 would be 
prohibitively slow for dynamic calculations. Nevertheless, it was observed that fl?) was 
very close to e for small Q. More specifically, it was found for a large number of 
different random distributions that 

1 x (Q = 01, 
4~ 10-4 (Q = I), 
1 x 10-4 (Q = 2). 

k 

k 

(5.7) 

It was also found that any clustering of the bubbles would improve the approximation, 
therefore the results above represent the worst case possible. In view of the 
considerable improvement in changing from Q = 0 to Q = 1, we opted to approximate 
Fk with FF). The system of ordinary differential equations given by (5.1), with 
approximated by Ff), was solved with a third-order Runge-Kutta-Merson scheme 
with adaptive time-stepping. 
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FIGURE 10. A plot of the variance of the bubbles' velocities, 8, as a function of time, 
numerical results shown in figures 5-8. -, 50 bubbles; 0-0,200 bubbles. 
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Before we go on to describe the simulations, let us discuss some quantities that are 
useful in understanding some aspects of the dynamics. The first is 

where M is the liquid momentum. Y is the same as 42 except that it has been scaled 
so V e 1 for random or periodic mixtures. Smaller values of Y indicate some amount 
of clustering. Another quantity that is useful is 

(5.9) 

where ts is the average bubble velocity. This quantity is a measure of how much the 
bubbles deviate from the mean value. Later we shall see that 8 will behave like a 
temperature for the collection of bubbles. In the numerical calculations that follow, we 
shall take L = 25 with 50 bubbles and L = 40 with 200 bubbles. The void fraction in 
both cases is close to 0.013. We shall see that the numerical results for N = 50 and 
L = 25 are similar to the results when N = 200 and L = 40. This gives us evidence that 
the size of the box plays a small role in the dynamics of the bubbles. In the case of 
Re = coy the energy and momentum were conserved to 0.1 YO and 0,001 %, respectively. 

5.2. Invicid case with no gravity (Re = a) 
The numerical results of 50 bubbles, started from a random configuration with 
~ ~ ( 0 )  = e,, are pictured on figures 5 and 6.  These figures provide six snapshots of 
bubble positions projected onto the (x, 2)- and (x, y)-planes, respectively. Figures 7 
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FIGURE 11. This presents various snapshots of the bubble motion, where the bubbles are given a 
random initial velocity as described by (5.9) with h = 1.5. The snapshots are projections in the 
(x, z)-plane and with the same times as those in figures 5 and 6. The degree of clustering is notably less 
than that in figure 5. For this simulation V = 1 ; which is consistent with the random configuration 
observed. Here we have 50 bubbles and L = 25. 

and 8 present results for 200 bubbles with the same initial conditions as above. These 
snapshots show the initially random homogeneous configuration of bubbles arranging 
themselves into flat clusters perpendicular to the z-axis as time increases (the liquid 
momentum is in the z-direction). The snapshots of projections of the bubbles’ position 
in the (x,y)-plane suggest that they are configured isotropically in this plane. The 
lengthscales associated with the clusters are approximately the same when N = 50 and 
L = 25 and when N = 200 and L = 40. This indicates that the lengthscales associated 
with the clustering are not determined by the size of the box. 

The behaviour observed here is consistent with the discussion given in $2.4.4 where 
we argued that the bubbles would try to arrange themselves so as to lower the effective 
potential energy, “Y, and at the same time increase the variance of their velocities. 
Indeed, a plot of Y as a function of time reveals that it decreases from V M 1 to 
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FIGURE 12. Same as figure 11, except there are 200 bubbles and L = 40. 

V = 0.88 during the course of the simulation (see figure 9). On the other hand, figure 10 
shows the variance in the bubbles’ velocity, 0, increasing to about 0.14 from zero. 
Numerical calculations show that if we integrate the system of equations for longer 
periods of time, V and 0 will continue to fluctuate at about 0.88 and 0.14, respectively. 
This suggests that the bubbles have reached a state of statistical equilibrium ; however, 
because of the relatively small number of bubbles, the fluctuations about these 
equilibrium states is fairly large. Therefore we conclude that these clusters are 
permanent structures of the bubbly flow and the variance of the bubble’s velocity will 
remain approximately 0.14. The clumps shown on figures 5-8 are not unlike the bubble 
clumps introduced by Smereka & Milton (1991). They showed that such bubble 
configurations would give well-posed equations in the variational setting proposed by 
Geurst (1985). 

Now we will consider the situation with the bubbles initially arranged in a random 
configuration, with initial velocities 

(5.10) %(O) = e, + A<, 
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FIGURE 13. versus 8, for 50 bubbles. 

where is a random vector whose components are uniform on [ -0.5,0.5] and h is a 
parameter which allows the initial value of 0 to be varied. Figures 11 and 12 show six 
snapshots of the bubbles' position projected on the (x,z)-plane for h = 1.5. We have 
N = 50 and L = 25 in figure 11, and N = 200 and L = 40 in figure 12. Clearly, there 
is almost no clustering of the bubbles, suggesting that the random configuration of 
bubbles is at statistical equilibrium. In this case, the equilibrium values of the effective 
potential energy, %, and the variance in the bubbles' velocity, 0,, were found to be 
1.00 and 0.75, respectively. These results suggest that the type of configuration at 
statistical equilibrium is related to 0,. 

The relationship between the values of 'f and 8 at statistical equilibrium, denoted 
as *yl; and 0,, respectively, is explored through several numerical experiments. In these 
simulations we consider only N = 50 and L = 25, with the bubbles initially arranged 
in a random configuration with initial velocities given by (5.10) ( A  is varied for each 
run). The results of these simulations are summarized in figure 13 where % is plotted 
as a function of 0,. The value of "y;; for 0, = 0 is mid% by virtue of the results in 32, 
and was computed using the method outlined in 34.2. This plot demonstrates that *yl; 
is related to 0,. For 0, sufficiently large, % x 1, consistent with a random arrangement 
of bubbles. In other words, a random homogeneous configuration of bubbles is stable 
provided that the variance of their velocities is sufficiently large. 

The above calculations suggest an interesting analogy, that 0, is akin to a 
temperature and the collection of bubbles could be considered a gas. As the 
temperature of the gas is lowered it condenses and the condensed phase will consist of 
bubble clusters. 
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FIGURE 14. Various snapshots are shown of the evolution of 50 bubbles. The bubbles started from 
rest in a random configuration with (Re = 180). This figure presents the projections onto the (x, 2)- 
plane. The snapshot times are: (a) = 0, (b) = 50, (c) = 100, (d) = 150, (e) = 800, v) = 1600. 

5.3 .  Effects of gravity and liquid viscosity (Re + 00) 

Presented in figures 14 and 15 are numerical computations for 50 bubbles and 
Re = 180, which corresponds approximately to a bubble of radius 0.044 cm in water. 
The bubbles were started from a random configuration with zero velocity. The results 
contained in these figures clearly show the bubbles clustering in planes perpendicular 
to the z-direction as time increases. This is similar to behaviour predicted in 52.5 with 
a one-bubble model for the liquid viscosity, whereas here we have a two-bubble model. 
Structures similar to these clusters have been observed in fluidized bed experiments by 
Singh & Joseph (1993). Many experiments in bubbly flow have not reported such 
phenomena, indicating that the time required for clustering is long, the effect of liquid 
turbulence may be important or that the variety of bubble sizes is significant. 
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FIGURE 15. Same as figure 14 except the snapshots are now projections in the (x,y)-plane. 

6.  Summary 
The results of this paper show that the type of bubble configuration which is 

statistically in equilibrium in an inviscid liquid, is related to the variance of the bubbles’ 
velocities. If the variance is small then a random isotropic arrangement of bubbles is 
not stable and they are observed to cluster. These clusters tend to be pancake-shaped 
and are oriented broadside to the flow. The bubbles’ tendency to organize themselves 
in this manner is a reflection of a basic variational principle: stable configurations 
maximize the virtual mass or equivalently minimize the effective conductivity when the 
variance of velocities is small. On the other hand, a random isotropic arrangement of 
bubbles will persist, provided the variance of the bubbles’ velocities is sufficiently large. 
This suggests that the effect of liquid turbulence may inhibit clustering, since it would 
increase the velocity variance of the bubbles. The clustering behaviour is enhanced by 
the effects of gravity and liquid viscosity and the long-time behaviour results in the 
formation of flat clusters perpendicular to the direction of gravity. 
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